BUILDING CONSERVATION AND ENVIRONMENT: COMMISSIONING USEFUL RESEARCH AND UNDERSTANDING PRACTICAL RESULTS

✤ What is Building Environment. Why does it matter

- Conditions to which historic fabric is exposed- moisture/ heat/ light
- Greatest agent of deterioration outside mechanical change
- Direct impact on energy efficiency/ cost
- We try and manipulate it for human comfort rather than building stability

HISTORIC BUILDING ENVIRONMENT IS DRIVEN BY THE WEATHER (VERY DIFFERENT TO MODERN BUILDINGS)

DEFINING THE QUESTIONS – WHAT DO YOU WANT TO KNOW

- Background Conditions (benchmark data)
- Specific Failures
- Specific Developments
- Exhibitions and Displays
- Building Performance

Background Conditions (benchmark data)

 Establish how a building performs before any problems or changes occur so when they do, you have the information available - allows long term planning. (building envelope/ rainwater disposal/ microclimate)

- Specific Failure
 - \circ Damage to stonework/ fabric
 - Damage to artefacts
 - Discomfort of users

- Specific Developments
 - Glass doors to promote visual accessibility
 - Conservation measures protective glazing
 - Heating changes anticipated
 - Difference between heating engineer monitoring and performance/conservation monitoring.
 - Working with heating advisors/ M&E consultants/ heating engineers

Exhibitions and Displays

- Establish present conditions and risks
- Design control measures
- $\circ~$ Evaluate impact of exhibition changes on historic fabric
- Working with exhibition designers/ case manufacturers/ project managers/ architects
- Most exhibition experience (designer/ conservator/ curator) is in museums – not uncontrolled cathedrals
- Get building performance advice very early

Differentiate design/ diagnostic environmental research and long
term museum monitoring

Building Performance

- Building heat is uncomfortable
- Energy costs/ carbon footprint is unnecessarily high
- Building fabric is deteriorating
- Difference between building performance/ conservation specialist and consulting engineer.

COMMISSIONING USEFUL RESEARCH

- Identify the right discipline and consultant (moisture survey, engineering survey, MBG survey etc.)
- References/ methodology from similar projects
- Define the questions in <u>collaboration</u> with consultant and core project team (architect, client)
- Don't produce a specification which is too prescriptive
- Don't define tools identify aims/ deliverables
- Consultant should be able to explain methodology and techniques

Environmental Survey: Sequence and tools

- Preliminary environmental assessment
 - Physical history
 - Current building condition (deterioration types/ patterns)
 - Rainwater disposal system
 - Microclimate

Anticipated performance

Actual performance

Artificial influences (heating/visitors)

- Preliminary conclusions
- Further research (if necessary)

TOOLS FOR INVESTIGATIONS

BASIC BUILDING EXAMINATION

GEOGRAPHY & MACRO CLIMATE

(MAPPING TOOLS ONLINE DATA)

UNDERSTAND RAINWATER DISPOSAL (LOCAL OPENING UP)

SUPERFICIAL MOISTURE MAPPING

HUMIDITY, TEMPERATURE, LIGHT, UV RADIATION

Understand the limitations of the analytical technique

CORRELATE DATA WITH DETERIORATION: DEVELOP MODEL

IR THERMOGRAPHY (THERMAL IMAGING)

CONVECTIVE SYSTEMS

BUILDING HEAT LOSS

MICROCLIMATE: BUILDING HEAT LOSS (AIR LEAKAGE)

PERSONAL / LOCAL HEAT LOSS

RADIANT/ CONVECTIVE HEAT LOSS

CONDUCTIVE HEAT LOSS

MOISTURE EVAPORATION

- ➢ USE RESULTS TO ESTABLISH BUILDING PERFORMANCE MODEL
 - \circ $\,$ Identify areas of failure that are understood
 - o Identify areas of failure which require further investigations

✤ Further Investigations: Environmental Monitoring

Long term temporal data correlating physical change with environmental parameters

DESIGN MONITORING TO ADDRESS SPECIFIC QUESTIONS

EXTERNAL WEATHER

—— RHext (%) (Quire High) ———— AText (°C) (Quire High)

BUILDING ENVELOPE: BUFFERING

T

SEASONAL PATTERNS/ HEATING EFFECTS

CANTERBURY CATHEDRAL: SOUTH OCULUS

Test Window

Control Window

Condensation on protected/ unprotected glass

S Oculus Internal - ST, DPT, TW - 18/10/07 To 17/10/08

CANTERBURY CATHEDRAL: BLACK PRINCE'S TESTER

HEAT INPUT FROM HEATING, HEAT LOSS FROM WINDOWS

CASE/ DISPLAY ASSESSMENT

EXHIBITION DESIGN AND ENVIRONMENTAL CONTROL MEASURES

IN DEPTH MOISTURE

Location B1: Nave croft, north side Height 50 cm

3D Objects

🐼 surfaces

🛛 🔀 geological units

- FOSS VALLEY FORMATION
- VI CUSE VALLEY FORMATION
- BREIGHTON SAND FORMATION
- POPPLETON GLACIOFLUVIAL FORMATION
- 🛃 🥅 ALNE GLACIOLACUSTRINE FORMATION
- VALE OF YORK TILL FORMATION
- E HEMINGBROUGH GLACIOLACUSTRINE FORMATION
- GLACIOFLUVIAL DEPOSITS

BELOW-GROUND WATER & HYDROGEOLOGY

VIBRATION MONITORING Work with structural engineers

STRUCTURAL MONITORING

Structure - S Aisle - LDT1, LDT2, LDT3, LDT4 - From 02-Jan To 24-Jun

COMMISSIONING AND UNDERSTANDING ENVIRONMENTAL RESEARCH

KEY POINTS

- \circ $\:$ Identify consultant with precise skills/ experience
- Define question accurately with consultant
- Research must have practical building applications
- Specify aims and deliverables, not tools
- Always carry out preliminary environmental assessment first
- Obtain baseline environmental data before any project, if possible
- Address environmental issues at outset of any project
- o Establish long term relationship with consultant

